An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment

19 Mar.,2024

 

All the figures presented in this review article were created with BioRender.com. The authors appreciate the support of BioRender.com software.

References

[1] Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci. 2004;110:49–74.10.1016/j.cis.2004.02.003Search in Google Scholar PubMed

[2] Frattini A, Pellegri N, Nicastro D, de Sanctis O. Preparation of amine coated silver nanoparticles using triethylenetetramine. Mater Chem Phys. 2005;94:148–52.10.1016/j.matchemphys.2005.04.023Search in Google Scholar

[3] Arora S, Jain J, Rajwade J, Paknikar K. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicol Appl Pharmacol. 2009;236:310–8.10.1016/j.taap.2009.02.020Search in Google Scholar PubMed

[4] Ghobashy MM, Sayed WAA, El-Helaly A. Impact of silver nanoparticles synthesized by irradiated polyvinylpyrrolidone on spodoptera littoralis nucleopolyhedrosis virus activity. J Polym Env. 2021. 10.1007/s10924-021-02116-3 Search in Google Scholar

[5] Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Env Sci Technol. 2008;42:4447–53.10.1021/es7029637Search in Google Scholar PubMed

[6] Zhang W, Qiao X, Chen J. Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids Surf, A Physicochem Eng Asp. 2007;299:22–8.10.1016/j.colsurfa.2006.11.012Search in Google Scholar

[7] Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, et al. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect. 2007;8:397–404.10.1089/sur.2006.032Search in Google Scholar PubMed

[8] Lee HY, Park HK, Lee YM, Kim K, Park SB. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Comm. 2007;28:2959–61.10.1039/b703034gSearch in Google Scholar PubMed

[9] Zhang Y, Sun J. A study on the bio-safety for nano-silver as anti-bacterial materials. Chin Med J. 2007;31(36–38):16.Search in Google Scholar

[10] Cheng D, Yang J, Zhao Y. Antibacterial materials of silver nanoparticles application in medical appliances and appliances for daily use. Chin Med Equip J. 2004;4:26–32.Search in Google Scholar

[11] Aklakur M, Asharf Rather M, Kumar N. Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit Rev Food Sci Nutr. 2016;56:2352–61.10.1080/10408398.2013.839543Search in Google Scholar PubMed

[12] Rather M, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, et al. Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. J Fish Aquat Sci. 2011;16:3.Search in Google Scholar

[13] Ahamed M, AlSalhi MS, Siddiqui M. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–8.10.1016/j.cca.2010.08.016Search in Google Scholar PubMed

[14] Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles-nanoparticle or silver ion. Toxicol Lett. 2012;208:286–92.10.1016/j.toxlet.2011.11.002Search in Google Scholar PubMed

[15] Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro. 2009;23:1076–84.10.1016/j.tiv.2009.06.001Search in Google Scholar PubMed

[16] Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol Vitro. 2013;27:330–8.10.1016/j.tiv.2012.08.021Search in Google Scholar PubMed

[17] De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomed-Nanotechnol. 2015;11:731–9.10.1016/j.nano.2014.11.002Search in Google Scholar PubMed

[18] Lubick N. Nanosilver toxicity: ions, nanoparticles-or both. Env Sci Technol. 2008;42:8617.10.1021/es8026314Search in Google Scholar PubMed

[19] Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol Vitro. 2010;24:872–8.10.1016/j.tiv.2009.12.001Search in Google Scholar PubMed

[20] Maurer-Jones MA, Mousavi MP, Chen LD, Bühlmann P, Haynes CL. Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci. 2013;4:2564–72.10.1039/c3sc50320hSearch in Google Scholar

[21] Chen X, Chen Y, Zhou X, Hu J. Detection of Ag+ ions and cysteine based on chelation actions between Ag+ ions and guanine bases. Talanta. 2013;107:277–83.10.1016/j.talanta.2013.01.025Search in Google Scholar PubMed

[22] Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21:2375.10.3390/ijms21072375Search in Google Scholar PubMed PubMed Central

[23] Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:1–17.10.1186/1743-8977-11-11Search in Google Scholar PubMed PubMed Central

[24] Kumar D, Kumar G, Das R, Agrawal V. Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Saf Env Prot. 2018;116:137–48.10.1016/j.psep.2018.02.001Search in Google Scholar

[25] Hajji S, Salem RBSB, Hamdi M, Jellouli K, Ayadi W, Nasri M, et al. Nanocomposite films based on chitosan-poly (vinyl alcohol) and silver nanoparticles with high antibacterial and antioxidant activities. Process Saf Env Prot. 2017;111:112–21.10.1016/j.psep.2017.06.018Search in Google Scholar

[26] Khoshnamvand M, Hao Z, Fadare OO, Hanachi P, Chen Y, Liu J. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. Chemosphere. 2020;258:127346.10.1016/j.chemosphere.2020.127346Search in Google Scholar PubMed

[27] Lapresta-Fernández A, Fernández A, Blasco J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends Anal Chem TRAC. 2012;32:40–59.10.1016/j.trac.2011.09.007Search in Google Scholar

[28] Helmi FM, Ali NM, Ismael SM. Nanomaterials for the inhibition of microbial growth on ancient Egyptian funeral masks. Mediterr Archaeol Archaeom. 2015;15:87–95.Search in Google Scholar

[29] He X, Peng C, Qiang S, Xiong LH, Zhao Z, Wang Z, et al. Less is more: Silver-AIE core@ shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials. 2020;238:1–7.10.1016/j.biomaterials.2020.119834Search in Google Scholar PubMed

[30] Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009;1:1560–6.10.1016/j.proche.2009.11.004Search in Google Scholar

[31] Li M, Yu H, Cheng Y, Guo Y, Yao W, Xie Y. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate. Ecotoxicol Env Saf. 2020;200:110780.10.1016/j.ecoenv.2020.110780Search in Google Scholar PubMed

[32] Parida D, Simonetti P, Frison R, Bülbül E, Altenried S, Arroyo Y, et al. Polymer-assisted in-situ thermal reduction of silver precursors: A solventless route for silver nanoparticles-polymer composites. Chem Eng Sci. 2020;389:123983.10.1016/j.cej.2019.123983Search in Google Scholar

[33] Kim JS. Reduction of silver nitrate in ethanol by poly (N-vinylpyrrolidone). J Ind Eng Chem. 2007;13:566–70.Search in Google Scholar

[34] Kim MH, Lee JJ, Lee JB, Choi KY. Synthesis of silver nanoplates with controlled shapes by reducing silver nitrate with poly (vinyl pyrrolidone) in N-methylpyrrolidone. Cryst Eng Comm. 2013;15:4660–6.10.1039/c3ce40096dSearch in Google Scholar

[35] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–9.10.1126/science.1077229Search in Google Scholar PubMed

[36] Kim D, Jeong S, Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. J Nanotechnol. 2006;17:4019.10.1088/0957-4484/17/16/004Search in Google Scholar PubMed

[37] Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir. 2007;23:5296–304.10.1021/la700553dSearch in Google Scholar PubMed

[38] Yin H, Yamamoto T, Wada Y, Yanagida S. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys. 2004;83:66–70.10.1016/j.matchemphys.2003.09.006Search in Google Scholar

[39] Dong X, Ji X, Wu H, Zhao L, Li J, Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C. 2009;113:6573–6.10.1021/jp900775bSearch in Google Scholar

[40] Dong Z, Richardson D, Pelham C, Islam MR. Rapid synthesis of silver nanoparticles using a household microwave and their characterization: a simple experiment for nanoscience laboratory. J Chem Educ. 2008;13:240–3.Search in Google Scholar

[41] Kumar SV, Bafana AP, Pawar P, Rahman A, Dahoumane SA, Jeffryes CS. High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology. Sci Rep. 2018;8:1–10.10.1038/s41598-018-23480-6Search in Google Scholar PubMed PubMed Central

[42] Bafana A, Kumar SV, Temizel-Sekeryan S, Dahoumane SA, Haselbach L, Jeffryes CS. Evaluating microwave-synthesized silver nanoparticles from silver nitrate with life cycle assessment techniques. Sci Total Env. 2018;636:936–43.10.1016/j.scitotenv.2018.04.345Search in Google Scholar PubMed

[43] Kudle KR, Donda MR, Alwala J, Koyyati R, Nagati V, Merugu R, et al. Biofabrication of silver nanoparticles using Cuminum cyminum through microwave irradiation. Dig J Nanomater Biostructures. 2012;2:65–9.Search in Google Scholar

[44] Pal J, Deb MK. Microwave synthesis of polymer coated silver nanoparticles by glucose as reducing agent. Indian J Chem. 2012;51:821–4.Search in Google Scholar

[45] Cai Y, Piao X, Gao W, Zhang Z, Nie E, Sun Z. Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 2017;7:34041–48.10.1039/C7RA05125ESearch in Google Scholar

[46] Liu FK, Huang PW, Chang YC, Ko FH, Chu TC. Microwave-assisted synthesis of silver nanorods. J Mater Res. 2011;19:469–73.10.1557/jmr.2004.19.2.469Search in Google Scholar

[47] Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20:1–24.10.3390/ijms20040865Search in Google Scholar PubMed PubMed Central

[48] Krutyakov YA, Olenin AY, Kudrinskii AA, Dzhurik PS, Lisichkin GV. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnol Russ. 2008;3:303–10.10.1134/S1995078008050054Search in Google Scholar

[49] Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4:1–23.10.1088/2043-6262/4/3/033001Search in Google Scholar

[50] Lee DK, Kang YS. Synthesis of silver nanocrystallites by a new thermal decomposition method and their characterization. ETRI J. 2004;26:252–6.10.4218/etrij.04.0103.0061Search in Google Scholar

[51] Jeevan P, Ramya K, Rena A. Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Ind J Biotechnol. 2012;11:72–6.Search in Google Scholar

[52] Bharti S, Mukherji S, Mukherji S. Extracellular synthesis of silver nanoparticles by Thiosphaera pantotropha and evaluation of their antibacterial and cytotoxic effects. 3 Biotech. 2020;10:1–12.10.1007/s13205-020-02218-0Search in Google Scholar PubMed PubMed Central

[53] Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2020;83:72–80.10.1002/jemt.23390Search in Google Scholar PubMed

[54] Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–702.10.1039/C8RA08982ESearch in Google Scholar PubMed PubMed Central

[55] Flores-Rojas GG, López-Saucedo F, Bucio E. Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: a short review. Radiat Phys Chem. 2020;169:107962.10.1016/j.radphyschem.2018.08.011Search in Google Scholar

[56] Huang H, Yang Y. Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol. 2008;68:2948–53.10.1016/j.compscitech.2007.10.003Search in Google Scholar

[57] Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA. Silver nanoparticles compromise neurodevelopment in PC12 cells: critical contributions of silver ion, particle size, coating, and composition. Env Health Perspect. 2011;119:37–44.10.1289/ehp.1002337Search in Google Scholar PubMed PubMed Central

[58] Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol. 2010;40:328–46.10.3109/10408440903453074Search in Google Scholar PubMed

[59] Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc. 2007;129:3287–91.10.1021/ja067636wSearch in Google Scholar PubMed

[60] Huang T, Xu XHN. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J Mater Chem. 2010;20:9867–76.10.1039/c0jm01990aSearch in Google Scholar

[61] Yu SJ, Yin YG, Liu JF. Silver nanoparticles in the environment. Env Sci Process Impacts. 2013;15:78–92.10.1039/C2EM30595JSearch in Google Scholar PubMed

[62] Dorjnamjin D, Ariunaa M, Shim YK. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity. Int J Mol Sci. 2008;9:807–20.10.3390/ijms9050807Search in Google Scholar PubMed PubMed Central

[63] Jin X, Li M, Wang J, Marambio-Jones C, Peng F, Huang X, et al. High-throughput screening of silver nanoparticle stability and bacterial inactivation in aquatic media: influence of specific ions. Env Sci Technol. 2010;44:7321–8.10.1021/es100854gSearch in Google Scholar PubMed

[64] Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Env. 2014;466–467:232–41.10.1016/j.scitotenv.2013.06.101Search in Google Scholar PubMed

[65] Kittler S, Greulich C, Diendorf J, Köller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater. 2010;22:4548–54.10.1021/cm100023pSearch in Google Scholar

[66] Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Env Sci Technol. 2010;44:2169–75.10.1021/es9035557Search in Google Scholar PubMed

[67] Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, et al. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Env Sci Technol. 2009;43:3322–8.10.1021/es803315vSearch in Google Scholar PubMed

[68] Zhang W, Yao Y, Sullivan N, Chen Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Env Sci Technol. 2011;45:4422–8.10.1021/es104205aSearch in Google Scholar PubMed

[69] Li P, Su M, Wang X, Zou X, Sun X, Shi J, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Env Sci. 2020;88:248–59.10.1016/j.jes.2019.09.013Search in Google Scholar PubMed

[70] Zou X, Li P, Lou J, Fu X, Zhang H. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: effects of dissolved oxygen. Env Pollut. 2017;230:674–82.10.1016/j.envpol.2017.07.007Search in Google Scholar

[71] Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans. Env Sci Technol. 2012;46:1119–27.10.1021/es202417tSearch in Google Scholar

[72] Xiang L, Fang J, Cheng H. Toxicity of silver nanoparticles to green algae M. aeruginosa and alleviation by organic matter. Env Monit Assess. 2018;190:1–9.10.1007/s10661-018-7022-7Search in Google Scholar

[73] Magesky A, Pelletier É. Cytotoxicity and physiological effects of silver nanoparticles on marine invertebrates. Cellular and molecular toxicology of nanoparticles. Cham: Springer; 2018. p. 285–309.10.1007/978-3-319-72041-8_17Search in Google Scholar

[74] Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: behaviour and effects in the aquatic environment. Env Int. 2011;37:517–31.10.1016/j.envint.2010.10.012Search in Google Scholar

[75] Rather MA, Bhat IA, Sharma N, Sharma R. Molecular and cellular toxicology of nanomaterials with related to aquatic organisms. in: Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer International Publishing; 2018. p. 263–84.10.1007/978-3-319-72041-8_16Search in Google Scholar

[76] Varner KE, El-Badawy A, Feldhake D, Venkatapathy R. State Sci review: everything nanosilver more. Washington. DC: U.S. Environmental Protection Agency; 2010. p. 363.Search in Google Scholar

[77] Reidy B, Haase A, Luch A, Dawson KA, Lynch I. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials. 2013;6:2295–350.10.3390/ma6062295Search in Google Scholar

[78] Roh J-Y, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, et al. Ecotoxicity of silver nanoparticles on the soil nematode caenorhabditis elegans using functional ecotoxicogenomics. Env Sci Technol. 2009;43:3933–40.10.1021/es803477uSearch in Google Scholar

[79] Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B. 2010;77:240–5.10.1016/j.colsurfb.2010.01.033Search in Google Scholar

[80] Wood CM, Hogstrand C, Galvez F, Munger RS. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag. Aquat Toxicol. 1996;35:93–109.10.1016/0166-445X(96)00003-3Search in Google Scholar

[81] Zhou B, Nichols J, Playle RC, Wood CM. An in vitro biotic ligand model (BLM) for silver binding to cultured gill epithelia of freshwater rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharmacol. 2005;202:25–37.10.1016/j.taap.2004.06.003Search in Google Scholar PubMed

[82] Birge WJ, Zuiderveen JA. The comparative toxicity of silver to aquatic biota. In: Andren AW, Bober TW, editors. Transport, Fate and Effects of Silver in the Environment Abstracts of 3rd International Conference, 6–9 August 1995. Washington, DC: University of Wisconsin Sea Grant Institute, Madison; 1995.Search in Google Scholar

[83] Hogstrand C, Wood CM. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish: Implications for water quality criteria. Env Toxicol Chem. 1998;17:547–61.10.1002/etc.5620170405Search in Google Scholar

[84] Grosell M, De Boeck G, Johannsson O, Wood CM. The effects of silver on intestinal ion and acid-base regulation in the marine teleost fish. Parophrys vetulus Comp Biochem Physiol Part - C: Toxicol Pharmacol. 1999;124:259–70.Search in Google Scholar

[85] Bruneau A, Turcotte P, Pilote M, Gagné F, Gagnon C. Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquat Toxicol. 2016;174:70–81.10.1016/j.aquatox.2016.02.013Search in Google Scholar PubMed

[86] Yeo MK, Kang M. Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bull Korean Chem Soc. 2008;29:1179–84.10.5012/bkcs.2008.29.6.1179Search in Google Scholar

[87] Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, et al. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci. 2010;115:521–34.10.1093/toxsci/kfq076Search in Google Scholar PubMed

[88] Bilberg K, Malte H, Wang T, Baatrup E. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol. 2010;96:159–65.10.1016/j.aquatox.2009.10.019Search in Google Scholar PubMed

[89] Naguib M, Mahmoud UM, Mekkawy IA, Sayed AEDH. Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical, histopathological, and histochemical studies. Toxicol Rep. 2020;7:133–41.10.1016/j.toxrep.2020.01.002Search in Google Scholar PubMed PubMed Central

[90] Rajkumar KS, Kanipandian N, Thirumurugan R. Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl Nanosci. 2016;6:19–29.10.1007/s13204-015-0417-7Search in Google Scholar

[91] Ringwood AH, McCarthy M, Bates TC, Carroll DL. The effects of silver nanoparticles on oyster embryos. Mar Env Res. 2010;69:S49–51.10.1016/j.marenvres.2009.10.011Search in Google Scholar PubMed

[92] Magesky A, de Oliveira Ribeiro CA, Beaulieu L, Pelletier É. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Env Toxicol Chem. 2017;36:1872–86.10.1002/etc.3709Search in Google Scholar PubMed

[93] Moreno-Garrido I, Pérez S, Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae. Mar Env Res. 2015;111:60–73.10.1016/j.marenvres.2015.05.008Search in Google Scholar PubMed

[94] Tsiola A, Pitta P, Callol AJ, Kagiorgi M, Kalantzi I, Mylona K, et al. The impact of silver nanoparticles on marine plankton dynamics: dependence on coating, size and concentration. Sci Total Env. 2017;601–602:1838–48.10.1016/j.scitotenv.2017.06.042Search in Google Scholar PubMed

[95] Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, et al. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano. 2015;9:9573–84.10.1021/acsnano.5b04583Search in Google Scholar PubMed

[96] Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, et al. Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Env Pollut. 2019;253:578–98.10.1016/j.envpol.2019.07.053Search in Google Scholar PubMed

[97] Pachapur VL, Dalila Larios A, Cledón M, Brar SK, Verma M, Surampalli RY. Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Env. 2016;563–564:933–43.10.1016/j.scitotenv.2015.11.090Search in Google Scholar PubMed

[98] Tortella GR, Rubilar O, Durán N, Diez MC, Martínez M, Parada J, et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J Hazard Mater. 2020;390:121974.10.1016/j.jhazmat.2019.121974Search in Google Scholar PubMed

[99] Yang Y, Xu S, Xu G, Liu R, Xu A, Chen S, et al. Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. Sci Total Env. 2019;647:1088–96.10.1016/j.scitotenv.2018.08.064Search in Google Scholar PubMed

[100] Devi GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V, et al. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol. 2015;158:149–56.10.1016/j.aquatox.2014.11.007Search in Google Scholar PubMed

[101] Fletcher ND, Lieb HC, Mullaugh KM. Stability of silver nanoparticle sulfidation products. Sci Total Env. 2019;648:854–60.10.1016/j.scitotenv.2018.08.239Search in Google Scholar PubMed

[102] Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, et al. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Env Sci Technol. 2011;45:3895–3901.10.1021/es103946gSearch in Google Scholar PubMed

[103] Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, et al. Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Env Sci Technol. 2014;48:761–9.10.1021/es403969xSearch in Google Scholar PubMed

[104] Yang Y, Xu G, Xu S, Chen S, Xu A, Wu L. Effect of ionic strength on bioaccumulation and toxicity of silver nanoparticles in Caenorhabditis elegans. Ecotoxicol Env Saf. 2018;165:291–8.10.1016/j.ecoenv.2018.09.008Search in Google Scholar PubMed

[105] Schultz CL, Lahive E, Lawlor A, Crossley A, Puntes V, Unrine JM, et al. Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans. Env Toxicol Chem. 2018;37:2609–18.10.1002/etc.4220Search in Google Scholar PubMed

[106] Rolim WR, Lamilla C, Pieretti JC, Nascimento MHM, Ferreira FF, Tortella GR, et al. Antibacterial activity and cytotoxicity of silver chloride/silver nanocomposite synthesized by a bacterium isolated from antarctic soil. BioNanoScience. 2020;10:136–48.10.1007/s12668-019-00693-1Search in Google Scholar

[107] Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10:339–54.10.1016/j.nantod.2015.04.002Search in Google Scholar

[108] Li M, Wang P, Dang F, Zhou D-M. The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Env Sci Nano. 2017;4:919–28.10.1039/C6EN00682ESearch in Google Scholar

[109] Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R. Nano-biofungicides: emerging trend in insect pest control. Advances and applications through fungal nanobiotechnology. Cham: Springer; 2016. p. 307–19.10.1007/978-3-319-42990-8_15Search in Google Scholar

[110] Jo Y-K, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93:1037–43.10.1094/PDIS-93-10-1037Search in Google Scholar PubMed

[111] Yokesh Babu M, Janaki Devi V, Ramakritinan C, Umarani R, Taredahalli N, Kumaraguru A. Application of biosynthesized silver nanoparticles in agricultural and marine pest control. Curr Nanosci. 2014;10:374–81.10.2174/15734137113096660103Search in Google Scholar

[112] Pérez‐Hernández H, Fernández‐Luqueño F, Huerta‐Lwanga E, Mendoza‐Vega J, Álvarez‐Solís, José D. Effect of engineered nanoparticles on soil biota: do they improve the soil quality and crop production or jeopardize them. Land Degrad Dev. 2020;31:2213–30.10.1002/ldr.3595Search in Google Scholar

[113] Ahmadov IS, Ramazanov MA, Gasimov EK, Rzayev FH, Veliyeva SB. The migration study of nanoparticles from soil to the leaves of plants. Biointerface Res Appl Chem. 2020;10:6101–11.10.33263/BRIAC105.61016111Search in Google Scholar

[114] Das P, Barua S, Sarkar S, Chatterjee SK, Mukherjee S, Goswami L, et al. Mechanism of toxicity and transformation of silver nanoparticles: inclusive assessment in earthworm-microbe-soil-plant system. Geoderma. 2018;314:73–84.10.1016/j.geoderma.2017.11.008Search in Google Scholar

[115] Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Env Sci Technol. 2011;45:2360–7.10.1021/es103995xSearch in Google Scholar PubMed

[116] Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J. Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C. 2011;115:4425–32.10.1021/jp109789jSearch in Google Scholar

[117] Rui M, Ma C, Tang X, Yang J, Jiang F, Pan Y, et al. Phytotoxicity of silver nanoparticles to peanut (Arachis hypogaea L.): physiological responses and food safety. ACS Sustain Chem Eng. 2017;5:6557–67.10.1021/acssuschemeng.7b00736Search in Google Scholar

[118] Pradas del Real AE, Vidal V, Carrière M, Castillo-Michel H, Levard C, Chaurand P, et al. Silver nanoparticles and wheat roots: a complex interplay. Env Sci Technol. 2017;51:5774–82.10.1021/acs.est.7b00422Search in Google Scholar PubMed

[119] Simonin M, Richaume A. Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Env Sci Pollut Res. 2015;22:13710–23.10.1007/s11356-015-4171-xSearch in Google Scholar PubMed

[120] Grün AL, Manz W, Kohl YL, Meier F, Straskraba S, Jost C, et al. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Env Sci Eur. 2019;31:1–22.10.1186/s12302-019-0196-ySearch in Google Scholar

[121] Parada J, Rubilar O, Fernández-Baldo MA, Bertolino FA, Durán N, Seabra A, et al. The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities. Crit Rev Biotechnol. 2019;39:157–72.10.1080/07388551.2018.1523865Search in Google Scholar PubMed

[122] Doolette CL, Gupta VV, Lu Y, Payne JL, Batstone DJ, Kirby JK, et al. Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS one. 2016;11(8):1–20.10.1371/journal.pone.0161979Search in Google Scholar PubMed PubMed Central

[123] Schultz CL, Gray J, Verweij RA, Busquets-Fité M, Puntes V, Svendsen C, et al. Aging reduces the toxicity of pristine but not sulphidised silver nanoparticles to soil bacteria. Environ Science: Nano. 2018;5:2618–30.10.1039/C8EN00054ASearch in Google Scholar

[124] Jung Y, Metreveli G, Park C-B, Baik S, Schaumann GE. Implications of pony lake fulvic acid for the aggregation and dissolution of oppositely charged surface-coated silver nanoparticles and their ecotoxicological effects on Daphnia magna. Env Sci Technol. 2018;52:436–45.10.1021/acs.est.7b04635Search in Google Scholar

[125] Grün AL, Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on major soil bacterial phyla of a loamy soil. Env Sci Eur. 2018;30:1–13.10.1186/s12302-018-0160-2Search in Google Scholar

[126] Tang J, Wu Y, Esquivel-Elizondo S, Sørensen SJ, Rittmann BE. How microbial aggregates protect against nanoparticle toxicity. Trends Biotechnol. 2018;36:1171–82.10.1016/j.tibtech.2018.06.009Search in Google Scholar

[127] Ellis DH, Maurer-Gardner EI, Sulentic CE, Hussain SM. Silver nanoparticle antibacterial efficacy and resistance development in key bacterial species. Biomed Phys Eng Express. 2018;5:015013.10.1088/2057-1976/aad5a7Search in Google Scholar

[128] Salas-Orozco M, Niño-Martínez N, Martínez-Castañón G-A, Méndez FT, Jasso MEC, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater. 2019;2019:1–11.10.1155/2019/7630316Search in Google Scholar

[129] Kashiwada S. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Env Health Perspect. 2006;114:1697–702.10.1289/ehp.9209Search in Google Scholar

[130] Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun. 2002;294:116–9.10.1016/S0006-291X(02)00445-XSearch in Google Scholar

[131] Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol Vitro. 2005;19:975–83.10.1016/j.tiv.2005.06.034Search in Google Scholar PubMed

[132] Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88:412–9.10.1093/toxsci/kfi256Search in Google Scholar PubMed PubMed Central

[133] Wen HC, Lin YN, Jian SR, Tseng SC, Weng MX, Liu YP, et al. Observation of growth of human fibroblasts on silver nanoparticles. J Phys Conf Ser. 2007;61:445–9.10.1088/1742-6596/61/1/089Search in Google Scholar

[134] Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci. 2006;92:456–63.10.1093/toxsci/kfl020Search in Google Scholar PubMed

[135] Li Y, Cummins E. Hazard characterization of silver nanoparticles for human exposure routes. J Env Sci Health A. 2020;55:704–25.10.1080/10934529.2020.1735852Search in Google Scholar PubMed

[136] Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2018;9:1–16.10.1016/j.jare.2017.10.008Search in Google Scholar PubMed PubMed Central

[137] Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52:1636–53.10.1002/anie.201205923Search in Google Scholar PubMed

[138] Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.10.1016/j.toxlet.2007.10.004Search in Google Scholar PubMed

[139] Simon-Deckers A, Gouget B, Mayne-L’Hermite M, Herlin-Boime N, Reynaud C, Carriere M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. J Toxicol. 2008;253:137–46.10.1016/j.tox.2008.09.007Search in Google Scholar PubMed

[140] Cho JG, Kim KT, Ryu TK, Lee J-W, Kim JE, Kim J. Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. Biomed Res Int. 2013;2013:1–7.Search in Google Scholar

[141] Kiran M, Betageri VS, Kumar CR, Vinay S, Latha M. In-vitro antibacterial, antioxidant and cytotoxic potential of silver nanoparticles synthesized using novel Eucalyptus tereticornis leaves extract. J Inorg Organomet Polym Mater. 2020;30:2916–25.10.1007/s10904-020-01443-7Search in Google Scholar

[142] Priya K, Vijayakumar M, Janani B. Chitosan-mediated synthesis of biogenic silver nanoparticles (AgNPs), nanoparticle characterisation and in vitro assessment of anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol. 2020;149:844–52.10.1016/j.ijbiomac.2020.02.007Search in Google Scholar PubMed

[143] Siddiquee MA, ud din Parray M, Mehdi SH, Alzahrani KA, Alshehri AA, Malik MA. Green synthesis of silver nanoparticles from Delonix regia leaf extracts: In-vitro cytotoxicity and interaction studies with bovine serum albumin. Mater Chem Phys. 2020;242:122493.10.1016/j.matchemphys.2019.122493Search in Google Scholar

[144] Pannerselvam B, Durai P, Thiyagarajan D, Song HJ, Kim KJ, Jung YS, et al. Facile synthesis of silver nanoparticles using Asian spider flower and its in vitro cytotoxic activity against human breast carcinoma cells. Processes. 2020;8:1–17.10.3390/pr8040430Search in Google Scholar

[145] Pannerselvam B, Alagumuthu TS, Cinnaiyan SK, Al-Dhabi NA, Ponmurugan K, Saravanan M, et al. In vitro cytotoxicity and antibacterial activity of optimized silver nanoparticles against wound infectious bacteria and their morphological studies. J Clust Sci. 2020;32:63–76.10.1007/s10876-020-01759-xSearch in Google Scholar

[146] Hamelian M, Zangeneh MM, Shahmohammadi A, Varmira K, Veisi H. Pistacia atlantica leaf extract mediated synthesis of silver nanoparticles and their antioxidant, cytotoxicity, and antibacterial effects under in vitro condition. Appl Organomet Chem. 2020;34:5278.10.1002/aoc.5278Search in Google Scholar

[147] Dara PK, Mahadevan R, Digita PA, Visnuvinayagam S, Kumar LRG, Mathew S, et al. Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): in vitro studies on antioxidant and antibacterial applications. J SN Appl Sci. 2020;2:665.10.1007/s42452-020-2261-ySearch in Google Scholar

[148] Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF, et al. Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci. 2012;126:457–68.10.1093/toxsci/kfs003Search in Google Scholar PubMed PubMed Central

[149] Sriram MI, Kalishwaralal K, Barathmanikanth S, Gurunathani S. Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanosci Meth. 2012;1:56–77.10.1080/17458080.2010.547878Search in Google Scholar

[150] van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Env Sci Technol. 2013;47:8005–14.10.1021/es401758dSearch in Google Scholar PubMed PubMed Central

[151] He D, Dorantes-Aranda JJ, Waite TD. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Env Sci Technol. 2012;46:8731–8.10.1021/es300588aSearch in Google Scholar PubMed

[152] Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, et al. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Vitro. 2014;28:1280–9.10.1016/j.tiv.2014.06.005Search in Google Scholar PubMed

[153] De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts JP, et al. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res. 2011;45:1856–64.10.1016/j.watres.2010.11.046Search in Google Scholar PubMed

[154] Li Y, Guo M, Lin Z, Zhao M, Xiao M, Wang C, et al. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomed. 2016;11:6693–702.10.2147/IJN.S122666Search in Google Scholar PubMed PubMed Central

[155] Hsiao IL, Hsieh YK, Wang CF, Chen IC, Huang YJ. Trojan-Horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Env Sci Technol. 2015;49:3813–21.10.1021/es504705pSearch in Google Scholar PubMed

[156] Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ. Exposure of engineered nanoparticles to human lung epithelial cells:  influence of chemical composition and catalytic activity on oxidative stress. Env Sci Technol. 2007;41:4158–63.10.1021/es062629tSearch in Google Scholar PubMed

[157] Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:1–17.10.1186/1743-8977-11-11Search in Google Scholar PubMed PubMed Central

[158] Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc. 2010;60:770–81.10.3155/1047-3289.60.7.770Search in Google Scholar PubMed

[159] Ramalingam M, Kumar T, Ramakrishna S, Soboyejo W. Biomaterials: a nano approach. Boca Raton, FL, USA: CRC Press; 2016.10.1201/b15739Search in Google Scholar

[160] Abd Elkodous M, El-Sayyad GS, Abdelrahman IY, El-Bastawisy HS, Mohamed AE, Mosallam FM, et al. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf B. 2019;180:411–28.10.1016/j.colsurfb.2019.05.008Search in Google Scholar PubMed

[161] Abdolahpur Monikh F, Vijver MG, Guo Z, Zhang P, Darbha GK, Peijnenburg WJGM. Metal sorption onto nanoscale plastic debris and trojan horse effects in Daphnia magna: role of dissolved organic matter. Water Res. 2020;186:116410.10.1016/j.watres.2020.116410Search in Google Scholar PubMed

[162] El-Batal AI, Mosallam FM, El-Sayyad GS. Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J Clust Sci. 2018;29:1003–15.10.1007/s10876-018-1411-5Search in Google Scholar

[163] Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of ag nanoparticles. Part 1. aggregation and dissolution. Env Sci Technol. 2012;46:6915–24.10.1021/es204682qSearch in Google Scholar PubMed

[164] Hu C, Peng T, Hu X, Nie Y, Zhou X, Qu J, et al. Plasmon-induced photodegradation of toxic pollutants with Ag−AgI/Al2O3 under visible-light irradiation. J Am Chem Soc. 2010;132:857–62.10.1021/ja907792dSearch in Google Scholar

[165] García-Alonso J, Rodriguez-Sanchez N, Misra SK, Valsami-Jones E, Croteau M-N, Luoma SN, et al. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Env. 2014;476–477:688–95.10.1016/j.scitotenv.2014.01.039Search in Google Scholar

[166] Wang P, Menzies NW, Lombi E, Sekine R, Blamey FPC, Hernandez-Soriano MC, et al. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology. 2015;9:1041–9.10.3109/17435390.2014.999139Search in Google Scholar

[167] Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103:1931–44.10.1002/jps.24001Search in Google Scholar

[168] Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev. 2001;50:107–42.10.1016/S0169-409X(01)00152-1Search in Google Scholar

[169] Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci. 2005;89:338–47.10.1093/toxsci/kfj027Search in Google Scholar PubMed

[170] Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D. Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomaterials. 2015;16:1–9.10.1155/2015/136765Search in Google Scholar

[171] El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Env Sci Technol. 2011;45:283–7.10.1021/es1034188Search in Google Scholar PubMed

[172] Milić M, Leitinger G, Pavičić I, Zebić Avdičević M, Dobrović S, Goessler W, et al. Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol. 2015;35:581–92.10.1002/jat.3081Search in Google Scholar PubMed

[173] Afifi M, Saddick S, Abu Zinada OA. Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci. 2016;23:754–60.10.1016/j.sjbs.2016.06.008Search in Google Scholar PubMed PubMed Central

[174] Kim JS, Song KS, Sung JH, Ryu HR, Choi BG, Cho HS, et al. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology. 2013;7:953–60.10.3109/17435390.2012.676099Search in Google Scholar PubMed

[175] Viswanath B, Kim S. Influence of nanotoxicity on human health and environment: the alternative strategies. Reviews of environmental contamination and toxicology. Vol. 242. Cham: Springer International Publishing; 2017. p. 61–104.10.1007/398_2016_12Search in Google Scholar PubMed

[176] Vrček IV, Žuntar I, Petlevski R, Pavičić I, Dutour, Sikirić M, et al. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells. Env Toxicol. 2016;31:679–92.10.1002/tox.22081Search in Google Scholar PubMed

[177] Jennifer M, Maciej W. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. J Biomater Nanobiotechnol. 2013;4:53–64.10.4236/jbnb.2013.41008Search in Google Scholar

[178] Miao P, Tang Y, Wang L. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Appl Mater. 2017;9:3940–7.10.1021/acsami.6b14247Search in Google Scholar PubMed

[179] Rabajczyk A. Possibilities for analysis of selected nanometals in solid environmental samples. Desalination Water Treat. 2016;57:1598–610.10.1080/19443994.2015.1030109Search in Google Scholar

[180] Mitrano DM, Ranville JF, Bednar A, Kazor K, Hering AS, Higgins CP. Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Env Sci Nano. 2014;1:248–59.10.1039/C3EN00108CSearch in Google Scholar

[181] Montaño MD, Badiei HR, Bazargan S, Ranville JF. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Env Sci Nano. 2014;1:338–46.10.1039/C4EN00058GSearch in Google Scholar

[182] Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting ÅK, McClure S, et al. Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Env Pollut. 2013;176:193–7.10.1016/j.envpol.2013.01.029Search in Google Scholar PubMed

[183] Laborda F, Bolea E, Cepriá G, Gómez MT, Jiménez MS, Pérez-Arantegui J, et al. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Analytica Chim Acta. 2016;904:10–32.10.1016/j.aca.2015.11.008Search in Google Scholar PubMed

[184] Leonardo T, Farhi E, Pouget S, Motellier S, Boisson AM, Banerjee D, et al. Silver accumulation in the green microalga coccomyxa actinabiotis: toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM. Env Sci Technol. 2016;50:359–67.10.1021/acs.est.5b03306Search in Google Scholar PubMed

[185] Segre CU, Leyarovska NE, Chapman LD, Lavender WM, Plag PW, King AS, et al. The MRCAT insertion device beamline at the advanced photon source. AIP Conf Proc. 2000;521:419–22.10.1063/1.1291825Search in Google Scholar

[186] Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, et al. Specific interactions between silver(i) ions and cytosine- cytosine pairs in DNA duplexes. Chem Comm. 2008;39:4825–7.10.1039/b808686aSearch in Google Scholar PubMed

[187] Xie WY, Huang WT, Li NB, Luo HQ. Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem Comm. 2012;48:82–4.10.1039/C1CC15449DSearch in Google Scholar PubMed

[188] Li Y, Yuan J, Xu Z. A sensitive fluorescence biosensor for silver ions (Ag+) detection based on C-Ag+-C structure and exonuclease III-assisted dual-recycling amplification. J Anal Methods Chem. 2019;2019:3712032.10.1155/2019/3712032Search in Google Scholar PubMed PubMed Central

[189] Xu S, Chen X, Chen X, Liang Y. Methylene blue-based distinguishing DNA conformation for colorimetric detection of silver ions. Microchem J. 2019;147:995–8.10.1016/j.microc.2019.04.019Search in Google Scholar

[190] Li T, Shi L, Wang E, Dong S. Silver-Ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine. Chem Eur J. 2009;15:3347–50.10.1002/chem.200900056Search in Google Scholar PubMed

[191] Li Z, Fan X, Cao B, Yuan F, Chen F, Wang S. Electrochemiluminescence detection of silver ion based on trigeminal structure of DNA. J Braz Chem Soc. 2019;30:1222–8.10.21577/0103-5053.20190017Search in Google Scholar

[192] Gao Z, Liu GG, Ye H, Rauschendorfer R, Tang D, Xia X. Facile colorimetric detection of silver ions with picomolar sensitivity. J Anal Chem. 2017;89:3622–9.10.1021/acs.analchem.6b05026Search in Google Scholar PubMed

[193] Alizadeh A, Abdi G, Khodaei MM. Colorimetric and visual detection of silver(I) using gold nanoparticles modified with furfuryl alcohol. Microchim Acta. 2016;183:1995–2003.10.1007/s00604-016-1830-7Search in Google Scholar

[194] Selva Sharma A, SasiKumar T, Ilanchelian M. A rapid and sensitive colorimetric sensor for detection of silver ions based on the non-aggregation of gold nanoparticles in the presence of ascorbic acid. J Clust Sci. 2018;29:655–62.10.1007/s10876-018-1375-5Search in Google Scholar

[195] Ghobashy MM, Mohamed TM. Radiation preparation of conducting nanocomposite membrane based on (Copper/Polyacrylic Acid/Poly Vinyl Alcohol) for rapid colorimetric sensor of mercury and silver ions. J Inorg Organomet Polym Mater. 2018;28:2297–2305.10.1007/s10904-018-0882-zSearch in Google Scholar

[196] Wang F, Wu Y, Zhan S, He L, Zhi W, Zhou X, et al. A simple and sensitive colorimetric detection of silver ions based on cationic polymer-directed AuNPs aggregation. Aust J Chem. 2013;66:113–8.10.1071/CH12375Search in Google Scholar

[197] Xie YF, Cheng YY, Liu ML, Zou HY, Huang CZ. A single gold nanoprobe for colorimetric detection of silver(i) ions with dark-field microscopy. Analyst. 2019;144:2011–6.10.1039/C8AN02397BSearch in Google Scholar PubMed

[198] Wang Z, Ding S. A simple colorimetric detection of silver ion based on uric acid for plasmonic silver nanoparticle. Taiwan: CRC Press; 2015. p. 123–7.10.1201/b18135-27Search in Google Scholar

[199] Liu B, Tan H, Chen Y. Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim Acta. 2013;180:331–9.10.1007/s00604-012-0936-9Search in Google Scholar

[200] Fu L, Wang A, Xie K, Zhu J, Chen F, Wang H, et al. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens Actuators B Chem. 2020;304:127390.10.1016/j.snb.2019.127390Search in Google Scholar

[201] Li H, Zhai J, Sun X. Sensitive and selective detection of silver(I) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform. Langmuir. 2011;27:4305–8.10.1021/la200052tSearch in Google Scholar PubMed

[202] Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–39.10.1039/C4TC00988FSearch in Google Scholar

[203] Cayuela A, Soriano ML, Kennedy SR, Steed JW, Valcárcel M. Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta. 2016;151:100–5.10.1016/j.talanta.2016.01.029Search in Google Scholar PubMed

[204] Murugesan P, Moses JA, Anandharamakrishnan C. One step synthesis of fluorescent carbon dots from neera for the detection of silver ions. Spectrosc Lett. 2020;53:407–15.10.1080/00387010.2020.1764589Search in Google Scholar

[205] Fahmy HM, Mosleh AM, Elghany AA, Shams-Eldin E, Abu Serea ES, Ali SA, et al. Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 2019;9:20118–36.10.1039/C9RA02907ASearch in Google Scholar

[206] Zook JM, Long SE, Cleveland D, Geronimo CLA, MacCuspie RI. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem. 2011;401:1993.10.6028/NIST.SP.1200-13Search in Google Scholar

[207] Lorenz C, Hagendorfer H, von Goetz N, Kaegi R, Gehrig R, Ulrich A, et al. Nanosized aerosols from consumer sprays: experimental analysis and exposure modeling for four commercial products. J Nanopart Res. 2011;13:3377–91.10.1007/s11051-011-0256-8Search in Google Scholar

[208] Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res. 2011;13:233–44.10.1007/s11051-010-0022-3Search in Google Scholar

[209] Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Env Health Perspect. 2010;118:407–13.10.1289/ehp.0901398Search in Google Scholar PubMed PubMed Central

[210] Pandiarajan J, Balaji S, Mahendran S, Ponmanickam P, Krishnan M. Synthesis and toxicity of silver nanoparticles, in nanoscience in food and agriculture 3. Cham: Springer International Publishing; 2016. p. 73–98.10.1007/978-3-319-48009-1_3Search in Google Scholar

Want more information on nano silver benefits? Click the link below to contact us.